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Abstract. Besides a sufficient condition, a necessary condition is given to determine some 
kind o f  consistent constraint on the potential of a (2+  I)-dimensional integrable system, 
which cannot be obtained from the sufficient condition. Under this kind of constraint on 
the potential a ( 2 +  I)-dimensional integrable system can be decomposed into two commul- 
ing ( I  +I)-dimensional integrable syslems. and can be funher decomposed into three 
commuting finite-dimensional integrable Hamiltonian systems. The BKP hierarchy is taken 
as an illustrative examole. 

It was demonstrated (see, for example, [I-E]) that each equation i n  a hierarchy of 
(1 + 1)-dimensional integrable Hamiltonian systems can be decomposed into two com- 
muting finite-dimensional integrable Hamiltonian systems by restricting the hierarchy 
of equations to some kind of finite-dimensional invariant submanifolds of their phase 
space. The main way to look for this kind o f  invariant submanifolds was proposed as 
follows [4-71. Consider integrable Hamiltonian systems 

SH" 
SU 

U,,, = K,(u) = J- 

where J is a Hamiltonian operator and 61811 denotes the variational derivative. The 
associated auxiliary linear problems for ( 1 )  are supposed to be 

LQ=O (20) 

@,,, = A d .  ( 2 6 )  

Let F;(u)  be conserved densities of (1); it is shown [ 9 ]  that the equation 

determines an invariant submanifold of the flow (1). As we already pointed out in the 
(1+ 1)-dimensional case [4-71, if we use (1.3) in the following way: 

?5+ N sA. 
su j = ,  su 

(4) 

where A is spectral parameter in (2). then the property of (3) guarantees that two 
commuting finite-dimensional integrable Hamiltonian systems can be obtained from 
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(20), (26) and (3). We would like to point out that this method can be generalized to 
the (2+1)-dimensional case. Indeed, it is easy to see from (3) that the equation 

SF, 
,=U su 

J 1 -=0 

or equivalently 

where k ( u )  are symmetries of (l),  also determines an invariant submanifold o f  (1). 
For example, (++*)x is a symmetry generator for the Kadomtsev-Petviashvili (KP) 

equation; here + and +* are eigenfunctions of (2) associated with the DP equation 
and its adjoint version [lo]. So for an arbitrary symmetry &(U) of KP, (5)  implies that 

R d u ) +  1 (*;*T),=O ( 6 )  

determines an invariant submanifold of the KP equation. This property explains why 
(6) can be used to obtain consistent constraint on U to construct two commuting 
(1  + 1)-dimensional integrable Hamiltonian systems from (6) and (2) associated with 
the KP equation in [ I l ,  121. 

However, we also would like t o  emphasize that equation (or formula like (6)) is a 
sufficient condition for determining a consistent constraint on U. Indeed there are some 
other kinds of consistent constraints on U which cannot be obtained from the sufficient 
condition ( 5 ) .  These consistent constraints also enable us to decompose a (2+ 
1)-dimensional integrable system into two commuting (1  + 1)-dimensional integrable 
systems and to obtain some kinds o i  soiutions to the (2+  ij-dimensionai integrabie 
systems through solving the two commuting (1 + 1)-dimensional integrable systems. 
For example, underthe constraint U = +r, ( 2 a )  and (26) associated with the  equation 
become the first and second equations respectively, in the Burgers hierarchy [12]. We 
want to find this kind of constraint from some necessary condition by directly using 
the conserved densities of (1). 

Furthermore, combining the resuiis in ( i t  i j -  and (i+ ij-dimensionai i‘dses, we 
want to point out generally that a (2+ 1)-dimensional integrable system can be decom- 
posed into three commuting finite-dimensional integrable Hamiltonian systems, and 
the solution to the latter three commuting systems solves the former (2+ 1)-dimensional 
system. This also provides a way to obtain some kinds of solutions to (2 + 1)-dimensional 
integrable systems through solving three commuting finite-dimensional integrable 
Hamiltonian systems. 

In the present letter the BKP hierarchy [I31 will be considered as a model example. 
We have not found the symmetry generator in terms of + and +* for the BKP equation 
yet. So we cannot use ( 5 )  to obtain the constraint on U. We will show how to use some 
necessary condition connected with the conserved densities of the BKP equation to 
find the consistent constraint on U, which makes the decomposition possible. Then we 
w,,, p,c>e,,, L W U  L I I I U S  U1 “sLurlrpus#rru,ra U, syua,rurr 111 U,.. r)hr “lL.1P1C1.J ..I.” ca...... 

commuting finite-dimensional integrable Hamiltonian systems. 
Consider the BKP hierarchy [13], the first equation in the hierarchy BKP, (the 

(2+ 1)-dimensional CDGKS equation) reads 

N 

i L I  

... :nn _._--_I I I_:_-I-  -c -I--- :a:--- -c :- tlr- _.,- L:- I.., :ntn +hian 

U , + i a : u  +$u,,,,+fuu, +~u,u, +Ur,+ 5u2u, -&,a;’ U#, -;a;‘.,,,, = o (7) 
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which is obtained as the compatibility condition of the following linear problems [ lo] :  

(80) 

(86) 

*,, = k x x  + 3 

$,7 = [J:+5uJ:+5u,J:+ ( $ J ; ' u , , + ~ u , ,  + Su')d]*. 

We now try to find a constraint on U like 

=f(*. *x,. . .) (9) 

where f(+, $x,. ..) is a polynomial of +, $=, . . . , so that (Xu) and (86) under (9) 
become two commuting (1 + 1)-dimensional integrable Hamiltonian systems. Observe 
that if F , ( u )  are the conserved densities of (7) (see [IO]), then F , ( f ( $ ,  (tX,. . .)) must 
be the conserved densities of the following equation obtained from (Xu) 

*,~,$~~~+f(*,*~,...)~~. (10) 

This is the necessary condition for (9) to be consistent constraint on U. For the first 
conserved density F , ( u )  = U ,  the necessary condition requires that U =f($, $=, . . .) 
satisfy the formula of conservation law 

. .  

where g(+, , .) is also a polynomial of JI, @x, .  . . . Notice the term J;'u,> appearing 
in ( 8 b ) ;  the requirement that (86) under (80) and (9) be a pure differential equation 
also imposes ( 1 1 )  on f: So (11) is the first necessary condition that f must satisfy. To 
illustrate the idea, we first consider 

U =f (*I 

(kXX + f i x ) x ) f *  = s**x +&*XX + &$XX + g*\\*rxx. 

g=f*$xx+gd*3$x) 

ff*k = (f**$xx + &*)$x + gwU,$L,. 

g,  = -f***x+g*(*) 

fldJX = -f*& + g2,*x 

f($)=@+m2. (12) 

then ( I O )  and (11) give 

Comparing the coefficients of $xx,T leads to 

which together with the remaining terms gives 

Similarly, we find from the coefficients of +xx that 

and we get 

which immediately yields f*+* = 0. So we find 

If we consider U =f(@, $x), in the exactly same way, we find thatf($, #,) has to satisfy 
either (12) or 

f (h k)=  .(+X)r (13) 
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However, for the second consewed density of B K P  F2(u)=3; ‘ur3 ,  it is easy to verify 
that F2(a(J ,X)x)=a(J ,k) , t=  aklkk-’(*~, ,+aklLX-’J,:)  is not a conserved density for 
the equation (10) under (13). Thus the necessary condition excludes the choice (13). 
Indeed for the general form (9). in similar way we still find that there is only one 
choice forfgiven by (12). In the following we will show that U =2J, and U =2J,2 are 
consistent constraints on U. 

Let 

u = 2 $  (14) 

then ( S a )  becomes the Kdv equation [14] 

J,,> = J,,, + 6 W. 
Using (14) and (IS), we have 

d;’u, = 2$,, +6J,2 

and it is then easy to varify that (86) is transformed to 

J,r5 = J:$+ 1OWxXx +20J,& +30$J2h (17) 

which is jUSt the second equation KdvS in the Kdv hierarchy. It is obvious that if J, 
satisfies both commuting integrable systems (15) and (17). then u = 2 $  is a solution 
to (7). 

If we set 

U = 2$.’ (18) 

then (Sa)  becomes the MKdv, equation [15] 

J,,, = 6 Q 2 k  + kXx. 

Notice from (18) and (19) that 

(19) 

d;’u,,= 6J,4+4J,J,xx -2*:. (20) 

A direct calculation then shows that (86)  is transformed to the second equation MKdvS 
in the MKdV hierarchy, 

J , , ~ = ~ ~ I L + ~ O J , ~ J , ~ ~ ~ + ~ ~ ~ J , , $ J ~ , , + ~ ~ ~ ~ ~ ~ J , , + ~ O J , L : .  (21) 

Also, it is easy to see that if J, solves both commuting integrable systems (19) and 
(21), then U = 2 Q 2  satisfies (7). 

Remark 1 .  The above results provide a way to obtain some kinds of solutions to the 
BKP,  equation through (14) or (18) by solving two commuting (l+l)-dimensional 
integrable systems (15) and (17) or (19) and (21), respectively. 

Remark 2. By using (7) and (8), a direct calculation shows that ($’), does not satisfy 
the linearized BKP,  equation. This means that ($J2).y is not a symmetry of (7). So the 
constraint (18) cannot be obtained from the sufficient condition (5). 
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Remark 3. From the conserved densities of the B K P  equation F , ( u )  [lo], we can 
construct the conserved densities p; (+ )  for the K d v  hierarchy and uj($) for the M K d v  

hierarchy by substituting (14), ( I S ) ,  and (18), (19),respectively, into F,( U). For example, 
from F , ( u ) = u ,  F 2 ( u ) = d ; ' u , , ,  F , ( u ) =  U J ; ' U , ~ + ' ~ J ; ~ U , , , , + U : - U ' ,  we have 

P I ( * )  = * I L 2 ( @ ) = ' k x r + 3 $ *  CL,(*) = w3 - $: 
U,(*) = *2 ~ 2 ( * ) = 2 ( J I J I X ) x - 3 $ : + 3 6 : + 3 $ ~  

~ , ( * ) = 6 * ~ - 6 * ~ * : + 3 * : ~ + 8 * ' * ~ ~  

Indeed similar results hold for the whole E K P  hierarchy. for example, the second 
equation B K P ~  in the B K P  hierarchy is 

119 2 7 3  77 3 u, ,+&~:u  +yU,TJ:U + ~ U , U , + T U  U,,, + 119uu,uX, + J U , - ~ U , U , , , - ~ U , , ~ ~ ,  -31 u , ~  
28 2 49 +TU U,> - TUU,,,, + 7Uu,J;' uq - $tJ;'u,,,, - $i,J-' u , ~  

(22) 7 - 2  
- t h x J ; 2 U , , t , - m x  r,,,,,,. 

The associated auxiliary linear problems can be constructed out by following the lines 
or [io]: 

*,, = kXX + 3 u*x (230) 

(I,, = [J:+7ud:+ 14u,J:+ + 14u2+$;'u,,)J:+ ( y ) u x x x  +28uu, +$u,,)J: 

+ ( ~ J ~ u ~ l 4 ~ ~ ~ ~ ~ 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ U ' + 7 ~ ~ ~ ' ~ ~ , + ~ J ~ 2 u ~ ~ ~ , ) J ~ ] ~ .  (23b) 

A straightforward calculation shows that under the constraint U =2$ and (15), 
( 2 3 h )  becomes the third equation K d v ,  in the K d v  hierarchy [14] 

J/,, = J&+42kJ:#+ 7 0 # x x ? L +  14$J:$+70$: 

+28O$&$L + 70@2$xxx + 14Od~'$~. (24) 

This implies that if $ satisfies both commuting integrable systems (15) and (24), then 
U = 2$ solves (22). 

Using the constraint U =2$2 and (191, it is found from direct calculation that (236) 
is transformed into the third equation M K d v 7  in the M K d v  hierarchy [15] 

*,,=J:IL+14*2J:Jr+84J/*~J:JI+ 140+$.xx$xxx+ 126$:~~,,.~+70~'~~~,,,+1821/r,*~, 

+ 5 6 0 ~ ' ~ x $ x ,  +4201/~~$:+ 140+6$.y,. (25) 

Similarly, if $ is a solution to both commuting integrable systems (19) and ( 2 9 ,  then 
U = 2 ~ 1 ~  satisfies (22). 

It was shown in [ 5 , 6 ]  that each equation in the K d v  hierarchy or  M K d v  hierarchy 
can be decomposed into two commuting finite-dimensional integrable Hamiltonian 
systems. For example, the K d v 3  equation (15) is associated with following auxiliary 
linear problems [14]: 

&+ *4 = A4 (260) 

4,, = -w +(4~+2*)4 , .  (266)  

Notice that S A / S $ =  4'; we can obtain a consistent constraint on $ from (4): 
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The property of (4) guarantees that (26a), (26b) and (27) are consistent. Indeed we 
can obtain two commuting finite-dimensional integrable Hamiltonian systems from 
(26a), (266) and (27) for distinct Aj 161: 

and 

with 

Ho = F E  S ( P ,  p)-f(Aq, q)+Kq, q)2 

HS=4F3 
T where s = ( q l ,  ..., q N ) T - ( 4 1  , . . .  ,b)', P = ( P ,  ,..., p N )  =(~,, , . . . ,&.,)T, A =  

diag(A,, . . . , A N ) ,  (., .) denotes the inner product in RN, Fk are involutive integrals of 
motion for (26) and (29) defined as follows [6]: 

F, = O  

F k + t  =f[(A"-'P, P)-(Akq, 9)+4(9, 9)(Ak-'93 9)l+$ 1 ((A'P,p)(Ak-'-'q, 4) 
k - 2  

;=o  

-(A'P, q)(Ak-2-'p. 4 ) )  k =  1 , 2 , .  . . . (30) 
It is known [6J that if (p, q )  is a solution of (28) and (29), then $ =(9 ,  q)  satisfies the 
Kdv3 equation (15). Similarly it is shown in [6] that if ( p ,  q )  satisfies both commuting 
integrable Hamiltonian systems (28) and 

with 

Hs = 4(2 Fa + F:) 

then $ = (4, q) is a solution to KdvS equation (17). The above results imply that i f  ( p ,  q )  
satisfies three commuting finite-dimensional integrable Hamiltonian systems (28). (29) 
and (31). then U =2(q, 4) is a solution to BKP, equation (7). 

In the same way, we find that if ( p .  q )  is a solution to three commuting finite- 
dimensional integrable Hamiltonian systems (28), (29) and 

dH7 a -U7 
q,, = - pr,= -- 

JP a4 

with (see [ 6 ] )  

H7 = 32(Fs + F2FJ 
then U = 2(q, q) satisfies the B K P ~  equation (22). 

The auxiliary linear problems for MKdv3 equation (19) are [15]: 
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Using the method in [ 5 ] ,  we find that under the constraint on $: 

$ = ( @ I ,  @ 1 ) + ( @ 2 >  @2) ( 3 4 )  

where Q,, = 
Hamiltonian systems from (33a) and (336) for distinct A,: 

. , , &), we can obtain two commuting finite-dimensional integrable 

with 

Ho = Fi 

H,=4F2+4F: 

(A@ I ,  Q,2) + $(@I,  @t)(@2, @2) + a(@ 1, Q,t)2 + a(@,, @Jz 

where Fh are the involutive integrals of motion for ( 3 5 )  and (36) defined as follows: 

F,=a 1 [ ( - l ) ~ ( A 2 k - ~ ~ 2 @ l , @ , ) ( A ' Q , ~ , @ , )  
2 k - 2  

i=0 

+2(h2k-2-'Qi, Qi)!.hq12, e>)+ ( - ! ) ( ( A 2 k - 2 - @ 2 ,  $12)!A@2, mi) 
h- i  

; - I  
- 1 (Azh-2i-1 Q,,, Q , ~ ) ( A 2 ~ - 1 @ ~ , @ 2 ) + ( A 2 k - ' ~ ~ , @ ~ )  k a l  

If (a,, Q 2 )  satisfies both commuting integrable Hamiltonian systems ( 3 5 )  and (36), 
then $ given by (34) solves the MKdv, equation (19). Similarly, if (Q,,, (P2) is a solution 
!O two commuting fini!e-dimensiona! Hami!tcmiar! systems (35) and 

Q, J Hs 
J @ l  

2 %  - 
JHs @ -- 

' I s -  J@> 

with 

Hs =42( F,+2F,F2+2F:) 

or 

( 3 7 )  

with 
.., - : 4 ' r -  Lr,+ i ~ ,  F, + F: + 6F;p2 i jF: j  

then $ given by (34) satisfies the equation (21) or the MKdv, equation ( E ) ,  
respectively. This means that if Q 2 )  satisfies three commuting integral systems 
( 3 9 ,  (36) and ( 3 7 )  (or (38)) ,  then ~ = 2 ( ( @ ~ , @ ~ ) + ( @ ~ , @ ~ ) ) ~  is a solution to BKP, 

equation (7) (or B K P ~  equation (22)). 
It is clear that the above results also provide a way to obtain some kinds of solutions 

to the BKP equation through solving three commuting finite-dimensional integrable 
Hamiltonian systems. 

This work was supported by the Foundation of Scientific Academy of China and 
National Committee of Education of China. 
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